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1 Category Theory

1.1 Basic notions

Define categories, functors, natural transformations, etc.

Exercise 1.1.1. Show that functors preserve isomorphisms. Deduce that if F1, F2 : A → B
and G : B → C are functors such that F1 ' F2 are naturally isomorphic, then G◦F1 ' G◦F2.

Solution. If f : A → A′ is an isomorphism with inverse f ′ : A′ → A, then F (f) ◦ F (f ′) =
F (f ◦ f ′) = F (1A′) = 1F (A′). Similarly F (f ′) ◦ F (f) = 1F (A). Thus F (f) is an isomorphism.

For the second statement, let η : F1 ' F2 denote the natural isomorphism. Apply G to
the naturality square and note that the maps {G(ηA) : GF1(A)→ GF2(A)} are isomorphisms
by the previous part.

We use HomC(A,B) to denote the morphisms A → B in a category C. Throughout, we
work with locally small categories, i.e. HomC(A,B) is always a set.

A bifunctor is a functor F defined on a product category A× B. The most important
example is Hom: Cop × C → Set. Note that bifunctoriality is a stronger condition than
“functoriality in each variable”: given A → A′ and B → B′, bifunctoriality requires the
following diagram to commute:

F (A,B) F (A′, B)

F (A,B′) F (A′, B′)

A subcategory of C is formed by taking some of the objects and some of the morphisms
of C such that identities are included and composition is respected. A functor F : C1 → C2

faithful (resp. full) if all hom-set maps HomC1(A,B)
F−→ HomC2(FA, FB) are injective

(resp. surjective). Note that we care more about morphisms than objects. We can view a
subcategory as a faithful “inclusion functor” ι : A → B.

Exercise 1.1.2. Show that, in the category of finite-dimensional vector spaces, there is a
natural isomorphism

V ∼= (V ∨)∨.

Solution. The isomorphism is given by the evaluation map

ev : v 7→ (f 7→ f(v)).

This is an isomorphism when V is finite-dimensional. To check naturality, suppose f : V →
W is a linear map. We need to show that the following diagram commutes:

V W

(V ∨)∨ (W∨)∨

f

ev ev

f∗∗

The induced map f ∗∗ is the map ϕ 7→ (ϕ◦(g 7→ g◦f)). If v ∈ V is any vector, then following
the diagram in either way yields the element g 7→ g(f(v)). So the diagram commutes.
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A monic morphism (or monomorphism) is a map f such that f ◦ α = f ◦ β implies
α = β. Equivalently, the induced map on hom-sets is injective. Dually, an epic map (or
epimorphism) is a map g such that α ◦ g = β ◦ g implies α = β.

A split monomorphism is a map that has a left inverse; a split epimorphism is a
map that has a right inverse. These are stronger conditions. They show up in the statement
of the so-called splitting lemma.

1.2 Universal properties and constructions

Exercise 1.2.1. Show that any two initial objects are uniquely isomorphic. Similarly, any
two final objects are uniquely isomorphic.

Solution. Suppose X and Y are initial. There’s a unique f : X → Y and a unique g : Y → X.
The composition fg : Y → Y is unique, so it must be the identity 1Y . Similarly gf = 1X
and so X ∼= Y are uniquely isomorphic. For final objects the proof is the same.

In general, objects with universal properties are often initial or final in some auxiliary
category.

1.2.1 Localization

We start with rings. Let A be a ring and S ⊂ A a multiplicative subset. Define the
localization S−1A as the set (A×S)/ ∼, where (a1, s1) ∼ (a2, s2) if and only if there exists
s ∈ S with s(a1s − a2s2) = 0. The extra s term ensures that ∼ is transitive. We write
a/s for the equivalence class [(a, s)]. Addition and multiplication are defined as they are for
fraction fields. Note that S−1A = 0 if 0 ∈ S.

Exercise 1.2.2. Show that the canonical map A → S−1A given by a 7→ a/1 is injective if
and only if S contains no zero-divisors of A.

Solution. We have a/1 = 0/1 if and only if sa = 0 for some s ∈ S.

Exercise 1.2.3. Check that A → S−1A has the following universal property: it is initial
with respect to A-algebras A→ B for which S is mapped into B×.

Solution. We aim to find a unique map of A-algebras ϕ̃ : S−1A→ B, i.e.

A B

S−1A

ϕ

ϕ̃

Any ϕ̃ satisying the commutative diagram needs to satisfy ϕ̃(a/s)ϕ(s) = ϕ̃(a/s)ϕ̃(s) =
ϕ̃(a) = ϕ(a), hence ϕ̃(a/s) = ϕ(a)ϕ(s)−1 is forced. We check that this is well-defined: if
a1/s1 = a2/s2, write s(a1s2 − a2s1) = 0 and apply ϕ. Cancel ϕ(s) since it’s a unit and
rearrange to get ϕ(a1)ϕ(s1)−1 = ϕ(a2)ϕ(s2)−1, as needed.

3



Consider the full subcategory ModA,S of ModA whose objects are A-modules M for
which multiplication by s ∈ S is invertible, i.e. the map µ : A → EndA(M) carries S into
AutA(M).

Exercise 1.2.4. There is an equivalence of categories between ModA,S and ModS−1A.

Solution. Not going to be super precise, but here’s the basic idea.

(i) Given an S−1A-module M , we convert it to an A-module via restriction of scalars,
i.e. am := (a/1)m. Conversely, suppose M is an A-module. Let EndZ(M) denote the
(commutative) subring of EndZ(M) generated by µ(A) and µ−1

s for all s ∈ S. Now, by
the universal property of Exercise 1.2.3, the map µ factors (uniquely) through a map
µ̃ as in the diagram below:

A EndZ(M)

S−1A

µ

µ̃

In particular, we obtain an S−1A-module structure on M compatible with the A-
module structure. Explicitly, (a/s)m = (µa ◦ µ−1

s )(m).

(ii) Given any S−1A-module morphism f : M → N , it is clear that f also defines an A-
module morphism M → N , where the A-module structures are the ones prescribed
by restriction of scalars as in (i). Conversely, suppose f : M → N is an A-module
morphism. Then one can check that f respects the induced S−1A-module structures
on M and N using the explicit characterization given in (i).

Let’s localize modules. Let M be an A-module. We’ll define S−1M by universal property:
M → S−1M is initial among A-module maps M → N where N ∈ ModA,S. To be precise,
M → S−1M is initial in the category whose objects are A-module maps M → N where
N ∈ModA,S and whose morphisms are given by A-module maps N1 → N2 compatible with
the respective maps from M . By Exericise 1.2.1, this is unique up to unique isomorphism.

The explicit construction of S−1M is just like localization of rings: take M × S modulo
(m1, s1) ∼ (m2, s2) whenever s(m1s2 −m2s1) = 0 for some s ∈ S, etc. The canonical map
M → S−1M sends m 7→ m/1. The A-module structure on S−1M is given by a(m/s) :=
(am)/s. By Exercise 1.2.4, this extends (uniquely) to an S−1A-module structure. We’ll see
later that localizing modules is equivalent to extension of scalars via tensor products.

Exercise 1.2.5. Show that localization commutes with direct sums. That is, there’s a
natural isomorphism of S−1A-modules

S−1
(⊕

Mλ

)
∼=
⊕

S−1Mλ.
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Solution. Set M =
⊕

Mλ. For each λ, consider the composition Mλ ↪→M 7→ S−1M . By the
universal property, this factors uniquely through an S−1A-module map hλ : S−1Mλ → S−1M .
We show that (S−1M, {hλ}) satisfies the universal property of the direct sum

⊕
S−1Mλ. Let

N be any S−1A-module and suppose we have maps {fλ : S−1Mλ → N}λ. We wish to show
that there is a unique f : S−1M → N making the following diagram commutes for every λ.

Mλ S−1Mλ N

M S−1M

ιλ

Φλ

hλ

fλ

Φ

∃!f

Consider the composition gλ = fλ ◦Φλ. By the universal property of the direct sum M , the
maps {gλ} assemble into a unique map g : M → N with gλ = g ◦ ιλ for all λ. Now, the
universal property of S−1M implies that g = f ◦ Φ for a unique f : S−1M → N . We claim
that this is the f we seek. Observe that

fλ ◦ Φλ = g ◦ ιλ = f ◦ Φ ◦ ιλ = f ◦ hλ ◦ Φλ.

Now, the universal property of S−1Mλ implies that fλ = f ◦ hλ, as needed. For uniqueness,
notice that any valid f must satisfy g = f ◦Φ, and we determined earlier that f is the unique
map satisfying this property.

Naturality can be checked, but I don’t feel like working out the details.

Note. The above categorial solution is a little formal. Intuitively, the isomorphism depends
on the “finiteness” of the direct sum (any vector has finitely many nonzero components).
This means that for any element of

⊕
S−1Mλ, we can find a “common denominator”, which

yields an element of S−1M . On the other hand, it is not true that localization commutes
with arbitrary products.

1.2.2 Tensor products

Given A-modules M and N , their tensor product is an A-module M ⊗A N and an A-
bilinear map π : M × N → M ⊗A N that is initial among such objects. Formally, for any
A-module P , every bilinear map b : M ×N → P factors uniquely through π.

M ×N P

M ⊗A N

π

b

∃!b̃

The tensor product is unique up to unique isomorphism. Explicitly, we take M ⊗A N to be
the free A-module generated by M ×N quotiented by the bilinearity relations. The map π
is the composition of the canonical inclusion into the free module followed by the quotient.

Exercise 1.2.6. Show that the preceding construction for M ⊗A N satisfies the universal
property of the tensor product.
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Solution. We use the notation as above and let A[M × N ] denote the free A-module on
M × N . By construction, M ⊗A N is generated by elements of the form m ⊗ n, and any
valid b̃ must satisfy b̃(m⊗ n) = b(m,n). It follows that b̃ is unique if it exists.

We now construct b̃. By universal property of A[M×N ], the map b : M×N → P extends
uniquely to an A-linear map b : A[M ×N ]→ P . (This does not rely on bilinearity of b.) Let
q : A[M ×N ]→M ⊗AN denote the quotient map. It suffices to show that ker q ⊂ ker b, and
it will follow from the universal property of the quotient that b descends to a map b̃ with
the desired properties.

A[M ×N ] P

M ⊗A N.

b

q
b̃

At this point, we just check that every element of A[M ×N ] of the form a(m,n)− (am, n),
a(m,n)− (m, an), (m1 +m2, n)− (m1, n)− (m2, n), and (m,n1 +n2)− (m,n1)− (m,n2) lies
in ker b using bilinearity of the original map b : M ×N → P .

We denote π(m,n) by m⊗n and call such elements pure tensors. One fact we deduce from
the explicit construction of the tensor product is that M ⊗AN is generated by pure tensors.
This is not apparent from the categorical definition, but it holds true for any tensor product
of M and N since they are all isomorphic. It’s clear from bilinearity that the A-module
structure on M ⊗A N is given by a(m⊗ n) = am⊗ n = m⊗ an, etc.

Typically, the universal property of M ⊗A N is used to check that maps on M ⊗A N are
well-defined. To specify a map f : M ⊗AN → P , we simply declare its values on m⊗ n and
then check that (m,n) 7→ m⊗ n 7→ f(m⊗ n) is bilinear. Then f exists and is unique.

Exercise 1.2.7. Show that (−)⊗A (−) defines a bifunctor ModA ×ModA →ModA.

Solution. Consider maps f : M → M ′ and g : N → N ′. The composition π′ ◦ (f × g) from
M ×N → M ′ ×N ′ → M ′ ⊗A N ′ is bilinear, and we obtain a unique map (f × g)∗ making
the following diagram commute:

M ×N

M ⊗A N M ′ ⊗A N ′
π

π′◦(f×g)

∃!

Clearly (−)∗ preserves identities. It also respects composition. Consider the commutative
diagram

M ×N M ′ ×N ′ M ′′ ×N ′′

M ⊗A N M ′ ⊗A N ′ M ′′ ⊗A N ′′
π

f×g

π′

f ′×g′

π′′

The map (f ′f × g′g)∗ is the unique map h such that π′′ ◦ (f ′f × g′g) = h ◦ π. Meanwhile, we
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have

(f ′ × g′)∗ ◦ (f × g)∗ ◦ π = (f ′ × g′)∗ ◦ π′ ◦ (f × g)

= π′′ ◦ (f ′ × g′) ◦ (f × g)

= π′′ ◦ (f ′f × g′g).

Thus (f ′f × g′g)∗ = (f ′ × g′)∗ ◦ (f × g)∗, as needed.

Exercise 1.2.8 (Extension of scalars). Let M be an A-module and A → B an A-algebra.
Then B⊗AM has a B-module structure that is compatible with its A-module structure via
restriction of scalars. Moreover, B ⊗A (−) is a functor ModA →ModB.

Solution. For any b ∈ B, consider the map B
b−→ B given by multiplication by b. Clearly

this is a map of A-modules, so functoriality of the tensor product in the first slot yields an

induced map B ⊗A M
b∗−→ B ⊗A M which defines scalar multiplication by b on B ⊗A M .

(We’ll sometimes use (·) for scalar multiplication to emphasize that it is by an element of
B.) Explicitly, we have b · (b′ ⊗ m) = bb′ ⊗ m. Associativity of this scalar multiplication
follows from the fact that functors respect composition. Compatibility with the A-module
structure on B ⊗A M follows (tautologically, almost) since the A-module structure on B is
defined by restriction of scalars. Indeed, writing ϕ : A→ B for the structure map, we have

a(b⊗m) = (ϕ(a)b)⊗m = ϕ(a) · (b⊗m).

Functoriality of the tensor product in the second slot implies that B ⊗A (−) is a functor
from A-modules to A-modules. In particular, each f : M → M ′ induces an A-module map
f∗ : B⊗AM → B⊗AM ′. It suffices to check that f∗ respects the B-module structures. This
amounts to commutativity of the following diagram for any b ∈ B.

B ⊗AM B ⊗AM ′

B ⊗AM B ⊗AM ′

b∗

f∗

b∗

f∗

This follows from bifunctoriality of the tensor product.

Exercise 1.2.9. Suppose A → B and A → C are A-algebras. Then B ⊗A C has a natural
ring structure.

Solution. Let b ∈ B and c ∈ C be arbitrary. The maps B
b−→ B and C

c−→ C induce an

A-module map B⊗AC
(b,c)∗−−−→ B⊗AC. Explicitly, this map is given by b′⊗ c′ 7→ bb′⊗ cc′. We

can then define multiplication by (b ⊗ c)(b′ ⊗ c′) = bb′ ⊗ cc′, and it is clear that this makes
B ⊗A C into a (commutative, unital) ring.

I don’t actually know what natural means in this context.

Exercise 1.2.10 (Localization is extension of scalars). Let S be a multiplicative subset of
A and M an A-module. Then there is a natural isomorphism of S−1A-modules

(S−1A)⊗AM ∼= S−1M.
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Solution. Consider the map M → (S−1A) ⊗A M given by m 7→ 1 ⊗ m. We show that
this satisfies the universal property of S−1M . Let N be any S−1A-module and consider an
A-module map f : M → N . We wish to show that there is a unique S−1A-module map f̃
making the diagram commute.

M N

(S−1A)⊗AM

f

f̃

Any valid f̃ must satisfy f̃(1⊗m) = f(m) and thus is determined on all pure tensors, hence
unique if it exists. Define f̃ by c⊗m 7→ cf(m) for all c ∈ S−1A and m ∈ M . Checking the
appropriate A-bilinearity conditions shows that f̃ is well-defined as an A-module map. By
Exercise 1.2.4, it is also a S−1A-module map, as needed.

Here’s a sketch for naturality. Consider a map f : M → N . Since S−1M and (S−1A)M⊗A
M both satisfy universal properties, the induced maps S−1M → S−1N and (S−1A)⊗AM →
(S−1A)⊗A N are unique for their respective commuting squares. We can then argue that a
certain pair of maps must coincide, which yields the desired naturality.

Exercises 1.2.10 and 1.2.5 also give natural isomorphisms if both sides are considered as
A-modules; just apply the restriction of scalars functor and use Exercise 1.1.1.

Exercise 1.2.11. Show that tensor products commute with arbitrary direct sums. That is,
there’s a natural isomorphism of A-modules

M ⊗A
(⊕

Nλ

)
∼=
⊕

M ⊗A Nλ.

Solution. Define Φ: M ⊗A (
⊕

Nλ)→
⊕

M ⊗A Nλ by m⊗ (nλ) 7→ (m⊗ nλ).
To define the inverse map, first consider the maps ψµ : M ⊗A Nµ → M ⊗A (

⊕
Nλ)

given by m ⊗ n 7→ m ⊗ (δλµn), where (δλµn) is the vector with n in the µ component and
zeroes elsewhere. The universal property of the direct sum yields a map Ψ:

⊕
M ⊗ANλ →

M ⊗A (
⊕

Nλ) given by Ψ =
∑

λ ψλ.
It’s easy to see that Φ and Ψ are inverse homomorphisms, so the desired isomorphism

follows. As for naturality, I don’t feel like checking the details.

1.2.3 Fiber products and pullback squares

Given maps X
α−→ Z and Y

β−→ Z in any category, a fibered product is an object X ×Z Y
equipped with maps πX and πY to X and Y such that the following pullback square
commutes:

X ×Z Y Y

X Z

πY

πX β

α

Moreover, (X ×Z Y, πX , πY ) is final among such triples. Formally, if W is an object with
maps π′X and π′Y to X and Y such that α◦π′X = β ◦π′Y , then π′X and π′Y both factor through
a unique map W → X ×Z Y .
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In Set, the fibered product is the subset of the product X × Y consisting of pairs (x, y)
with α(x) = β(y).

Exercise 1.2.12. Suppose Z is a final object. Assuming they exist, show that X ×Z Y and
X × Y are uniquely isomorphic.

Solution. Draw the diagram:

X ×Z Y

X × Y Y

X Z

σ

π′X

π′Y

ρ

πY

πX β

α

The universal property of the product yields a unique map σ such that π′X = πX ◦ σ and
π′Y = πY ◦ σ. Meanwhile, finality of Z implies that the maps α ◦ πX and β ◦ πY must equal
the unique map X × Y → Z, hence the universal property of the fibered product yields a
unique map ρ such that πX = π′X ◦ ρ and πY = π′Y ◦ ρ. The standard argument now shows
that ρ and σ are inverses, as needed. Moreover, the preceding discussion implies that ρ and
σ are the unique isomorphism pair between (X × Y, πX , πY ) and (X ×Z Y, π′X , π′Y ).

Exercise 1.2.13. Given morphisms X1 → Y,X2 → Y , and Y → Z, show that there is a
natural morphism X1 ×Y X → X1 ×Z X2, assuming that both fibered products exist.

Solution. The maps X1 ×Y X2
π1−→ X1 → Y → Z and X1 ×Y X2

π2−→ X2 → Y → Z agree, so
the universal property of X1 ×Z X2 yields the desired map.

Exercise 1.2.14 (Magic diagram). With notation as in the previous exercise, show that

X1 ×Y X2 X1 ×Z X2

Y Y ×Z Y

is a pullback square. (Assume all relevant fibered products exist.)

Solution. First, let’s clarify where the maps in the magic diagram come from and why they
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commute. Just take a close look at the following commutative diagram:

X1 Y

X1 ×Y X2 X1 ×Z X2 Y Y ×Z Y Z

X2 Y

∃!

π1

π2

∃!

Suppose maps T → Y and T → X1 ×Z X2 are given such that f : T → Y → Y ×Z Y and
g : T → X1 ×Z X2 → Y ×Z Y agree. Check that the following diagrams commute:

Y Y

T Y ×Z Y Z T Y ×Z Y Z

Y Y

X1

X2

g f

The maps T → Xi → Y → Z on the left are the ones obtained by composition with
T → X1 ×Z X2, and the maps T → Y on the right are both the given map T → Y . Note
that f = g holds if and only if T → X1 → Y and T → X2 → Y both equal T → Y ,
which is equivalent to the existence of a unique map h : T → X1 ×Y X2 “making everything
commute”.

We define the coproduct and fibered coproduct by reversing all arrows in the defi-
nitions of product and fibered product, respecitvely. For example, the coproduct in Set is
disjoint union. We use pushout square to denote the defining commutative square of the
fibered coproduct.

Exercise 1.2.15. Recall from Exercise 1.2.9 that if σ : A→ B and τ : A→ C are A-algebras,
the tensor product B ⊗A C inherits a natural ring structure. Show that, equipped with the
maps B → B ⊗A C and C → B ⊗A C given by b 7→ b⊗ 1 and c 7→ 1⊗ c, this construction is
the fibered coproduct of A→ B and A→ C in CRing.

Solution. Owing to the A-module structure on B⊗AC, we have σ(a)⊗1 = a(1⊗1) = 1⊗τ(a)
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for any a ∈ A. Thus the square in the diagram below commutes.

A C

B B ⊗A C

R

σ

τ

g

f

∃!h

To check that it is a pushout square, let R be a ring and f : B → R, g : C → R ring maps
with f ◦ σ = g ◦ τ . (Note that this endows R with the structure of an A-algebra.) Any ring
map h : B ⊗A C → R making the diagram commute is uniquely determined: it must satisfy
h(b⊗ 1) = f(b) and h(1⊗ c) = g(c), meaning it must satisfy h(b⊗ c) = f(b)g(c), and is thus
determined on all of B ⊗A C. To show that h exists, we simply note that (b, c) 7→ f(b)g(c)
is A-bilinear and thus h : b⊗ c 7→ f(b)g(c) is a well-defined A-module map. It’s clear that h
defined as such is a ring map (in fact, an A-algebra map), and we’re done.

Note. We can equivalently interpret B ⊗A C as the coproduct of B and C in AlgA.

1.2.4 Yoneda lemma

Exercise 1.2.16 (Yoneda’s lemma). Suppose F is a covariant functor C → Set and A ∈ C
is an object. Then there is a bijection between F (A) and the set of natural transformations
η : HomC(A,−)→ F .

Solution. Let η be such a natural transformation. Naturality implies that, for every mor-
phism f : A→ B, the following diagram commutes.

HomC(A,A) HomC(A,B)

F (A) F (B)

ηA

f∗

ηB

F (f)

Define θ(η) := ηA(1A). Note that the square implies that ηB(f) = F (f)(θ(η)). As B and f
were arbitrary, it follows that η is completely determined by θ(η). In particular, θ is injective
as a map from natural transformations to F (A). Moreover, given an element x ∈ F (A), it
is easy to see that setting ηB(f) := F (f)(x) for each B ∈ C and f ∈ HomC(A,B) defines
a natural transformation η : HomC(A,−) → F . In particular, θ is surjective. Thus θ yields
the desired bijection.

There is a dual formulation of Yoneda’s lemma where F is instead a contravariant functor
and the natural transformations η take HomC(−, A) to F . The proof is nearly identitcal.
We use the dual to describe a special case of the lemma. Consider the functor category of
C, denoted F(Cop), whose objects are contravariant functors C → Set and whose morphisms
are natural transformations between said functors. There is a (covariant) functor h• : C →
F(Cop) sending A to HomC(−, A), called the Yoneda embedding.
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For a given B ∈ C, if we let F denote the (contravariant) functor HomC(−, B), then
the Yoneda lemma yields a bijection between F (A) = HomC(A,B) and the set of natural
transformations from HomC(−, A) to F = HomC(−, B). In other words, the Yoneda em-
bedding induces a bijection between hom-sets, and is thus a fully faithful functor. (Hence
“embedding”.)

Of course, there is a dual formulation of the Yoneda embedding, which states that the
(contravariant) functor h• embeds C into the category of covariant functors C → Set.

I guess the slogan here is: morphisms A → B are the same as natural transforma-
tions HomC(−, A)→ HomC(−, B), and the same as natural transformations HomC(B,−)→
HomC(A,−).

1.3 Limits and colimits

A small category is a category whose objects form a set. (Think posets.) Let I be a small
category and A : I → C a functor. We call A a diagram indexed by I. Intuitively, the
data of A is a commutative diagram in C whose “shape” is given by I.

The limit of the diagram, denoted lim←−Ai, is an object L equipped with morphisms
fi : L → Ai for each i ∈ I such that, for any morphism m : j → k in I, the following
diagram commutes:

L

Aj Ak

fj
fk

A(m)

We require the limit to be final with respect to this property, and it follows that lim←−Ai is
unique up to unique isomorphism.

For example, if I has only the identity morphisms, then the limit lim←−Ai is the product∏
Ai. If I has three objects {1, 2, 3} whose only nonidentity morphisms are 1 → 3 and

2→ 3, the lim←−Ai is the fibered product A1 ×A3 A2.

Exercise 1.3.1. Suppose I is a poset with an initial object e. Show that the limit of any
diagram indexed by I exists.

Solution. We show that the limit is Ae, where for each i ∈ I the map Ae → Ai is the one
induced by the unique map e→ i. By functoriality, all the required commuting triangles are
satisfied.

Suppose L is another object with maps gi : L → Ai for every i ∈ I satisfying the com-
muting triangles. Note that these maps include a map ge : L → Ae. We wish to show that
ge is the unique map making the following diagram commute for all m : j → k in I:

L

Ae

Aj Ak

gj
∃!ge

gk

A(m)
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By assumption ge works. For uniqueness, simply take m to be the identity Ae → Ae. Then
trivially any valid L→ Ae equals ge, as desired.

Exercise 1.3.2. Show that

lim←−Ai = {(ai)i∈I | A(m) : aj 7→ ak for all m : j → k}

equipped with the coordinate projections πj : lim←−Ai → Aj gives an explicit construction of
limits in Set.

Solution. Given any m : j → k and any element a = (ai)i∈I in the limit, we have

A(m)(πj(a)) = A(m)(aj) = ak = πk(a),

so the proposed limit satisfies all commuting triangles. Suppose (L, {fi : L → Ai}) also
satisfies all commuting triangles. The function L → lim←−Ai given by ` 7→ (fi(`))i∈I makes
everything commute; it is also easy to see that is unique.

The construction in Exercise 1.3.2 works equally well for categories consisting of “sets and
functions with additional structure”, like ModA and CRing. Think of the construction as
the subset of the product

∏
Ai consisting of “chains” generated by the maps in the diagram.

Example: consider the ring Zp of p-adic integers, defined as the limit lim←−Z/pi.

Zp

. . . Z/p3 Z/p2 Z/p

Here, the index category I is the opposite cateogry of the poset (N,≤), and the maps
Z/pi+1 → Z/pi are the obvious reduction-modulo-pi maps. In light of Exercise 1.3.2, one
often defines Zp as the ring whose elements are formal series a0 + a1p + a2p

2 + . . . where
0 ≤ ai < p. Each truncation a0 + a1p+ · · ·+ aip

i determines an element of Z/pi+1.
Let’s now talk about colimits. It’s notated lim−→Ai. You can guess the definition. The

coproduct is the colimit when I has no nontrivial morphisms.

Exercise 1.3.3. Interpret Q = lim−→
1
n
Z.

Solution. For now, we’ll do it in Set. The diagram in question is indexed by the poset
N ordered by divisibility, and the maps 1

n
Z → 1

m
Z for n | m as well as 1

n
Z → Q are all

inclusions.
To show that Q is initial, suppose T is a set equipped with maps fn : 1

n
Z→ T satisfying

all commuting triangles. We seek a unique f : Q → T making everything commute. Given
any q ∈ Q, write q = a/b in lowest terms and set f(q) = fb(a/b). Note that this is forced,
so f is unique. To see that f satisfies all commuting triangles, suppose a/b = a′/b′. Then
b | b′, and we have the following diagram, which commutes except possibly for the triangle

13



on the right.

T

Q

1
b
Z 1

b′
Z

∃!f
fb fb′

We have fb′(a
′/b′) = fb(a/b) = f(ιb′(a

′/b′)), so the triangle on the right commutes, too.

We introduce a nice class of index categories for which there is a simple description of
the colimit. A nonempty category I is filtered if

(i) For any i, j ∈ I, there is an object k ∈ I and morphisms i→ k and j → k,

(ii) For any parallel morphisms m1,m2 : i → j, there is a morphism π : j → k for which
π ◦m1 = π ◦m2.

Note that if i→ j and i→ k are morphisms in a filtered category, then there exist morphisms
j → ` and k → ` that “complete the square”: i→ j → ` equals i→ k → `.

Exercise 1.3.4. Suppose I is filtered. Show that any diagram {Ai} in Set indexed by I
has the following colimit:

lim−→Ai =

{
(ai, i) ∈

∐
i∈I

Ai

}
/ ∼, (1.3.1)

where∼ identifies (ai, i) and (aj, j) if and only if the diagram contains morphisms f : Ai → Ak
and g : Aj → Ak such that f(ai) = g(aj). The maps Aj → lim−→Ai are the obvious ones.

Solution. We first check that ∼ is actually an equivalence relation: reflexivity follows from
identity morphisms and symmetry is evident. For transitivity, suppose (ai, i) ∼ (aj, j)
and (aj, j) ∼ (ak, k). Then there exist f : Ai → Am and g : Aj → Am for which f(ai) =
g(aj) = am, and f ′ : Aj → A` and g′ : Ak → A` for which f ′(aj) = g′(ak) = a`. Pick
morphisms f ′′ : Am → An and g′′ : A` → An such that f ′′ ◦ g = g′′ ◦ f ′. It follows that
(f ′′ ◦ f ′)(ai) = (g′′ ◦ g′)(ak), so (ai, i) ∼ (ak, k), as needed.

Ai Aj Ak

Am A`

An

f g f ′ g′

f ′′ g′′

We now show that lim−→Ai is initial. Suppose T is a set equipped with maps fi : Ai →
T satisfying all commuting triangles. We wish to find a unique f : lim−→Ai → T making
everything commute. Note that every element x ∈ lim−→Ai is the image of some aj under the
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map Aj → lim−→Ai. Thus we are forced to set f(x) = fj(aj). It remains to show that this
is well-defined; in other words, that fj(aj) = fk(ak) whenever (aj, j) ∼ (ak, k). Pick maps
g : Aj → Am and h : Ak → Am, belonging to the diagram, such that g(aj) = h(ak). By
assumption, the following diagram commutes:

Aj Ak

Am

T

fj

g

fk

h

fm

So fj(aj) = fm(g(aj)) = fm(h(ak)) = fk(ak), as needed.

The way to think about the equivalence relation ∼ in (1.3.1) is that it’s the equivalence
relation “generated by the morphisms of the diagram”, identifying an element of Ai with its
images.

The construction in Exercise 1.3.4 also works in ModA. More precisely, if I is filtered,
the underlying set of lim−→Mi is given by (1.3.1), and addition is defined as follows: for any
mi ∈ Mi and mj ∈ Mj, find morphisms Mi → Mk and Mj → Mk belonging to the diagram
and sum the images of mi,mj to obtain an element mk ∈Mk. We then declare

[(mi, i)] + [(mj, j)] := [(mk, k)].

For scalar multiplication, we set a[(mi, i)] = [(ami, i)].

Exercise 1.3.5. Show that the above declarations turn lim←−Mi as defined in (1.3.1) into the
colimit of the diagram in ModA.

Solution. We show that addition is well-defined. First we show that it is independent of the
choice of Mk. In what follows, all morphisms are assumed to belong to the diagram. Suppose
f : Mi → Mk, g : Mj → Mk, f

′ : Mi → Mk′ , and g′ : Mj → Mk′ . Pick α : Mk → M` and
β : Mk′ →M` so that α◦f = β ◦f ′, and then pick γ : M` →Mn such that γ ◦α◦g = γ ◦β ◦g′.
Then γ(α(f(mi) + g(mj))) = γ(β(f ′(mi) + g′(mj))) and so [(f(mi) + g(mj), k)] = [(f ′(mi) +
g′(mj), k

′)]. To show that addition is independent of the representatives mi and mj, complete
some more squares. There are more things to check but they’re straightforward.

Exercise 1.3.6 (Localization as a filtered colimit). Let A be a domain and S ⊂ A multi-
plicative. Then, in the category of A-modules,

S−1A = lim−→
1

s
A.

Here, the limit is taken over s ∈ S, and we view 1
s
A as a submodule of Frac(A). (Note that

1
s
A might not be a ring!) We interpret 1

0
A as all of Frac(A). The morphisms of the diagram

are the inclusions 1
s
A→ 1

s′
A for s | s′, and the maps 1

s
A→ S−1A are the obvious ones.
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Solution. Observe that the index category (namely, S with morphisms given by divisibility)
is filtered: for any s1, s2, there are morphisms s1 → s1s2 and s2 → s1s2, and any parallel
morphisms agree since there’s at most one morphism between any two objects.

Checking that S−1A is the colimit follows much the same procedure as in Exercise 1.3.3.
In fact, this exercise allows us to interpret Exercise 1.3.3 in ModZ instead of Set.

In set-like categories, we should liken limits to “intersections” and colimits to “unions”
(and in certain categories, like posets that are power sets under inclusion, this can be made
precise). Intuitively, an element of a limit is an element “belonging to all the objects”, and
an element of the colimit is a “representative” for an element in some object.

Let’s now think about limits and colimits as functors. Suppose C is a category in which
arbitrary limits and colimits exist. Let F(I, C) denote the category of diagrams of shape I
(i.e. functors from I → C). The morphisms are natural transformations, i.e. collections of
maps (fi)i∈I making everything commute. Then there are covariant functors

lim←−
I
, lim−→
I

: F(I, C)→ C

sending each diagram D to its limit and colimit, respectively. Here’s a picture showing where
the induced map of colimits comes from:

A1 B1

A2 B2

A3 B3

lim−→A lim−→B∃!

Exercise 1.3.7. Make sense of the statment “limits commute with limits” and prove it.
Similarly, colimits commute with colimits.

Solution. Suppose I,J are index categories, and we have a functor

D : I → F(J , C).

Think of D as a “shape-I diagram of shape-J diagrams”. The claim is that

lim←−
I

(
lim←−
J
◦D

)
= lim←−

J

(
lim←−
I
D

)
. (1.3.2)

On the left side, the inner term is the composition of functors, and it sends each i ∈ I to the
limit of its corresponding J -shaped diagram; Doing this for all i yields a “I-shaped diagram
of limits”, and we can then take the limit of these limits over I.
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On the right, we first “take a limit of diagrams”, producing a diagram (and a collection
of natural transformations) in the shape of J , and we then take the limit of that diagram
over J .

We sketch a proof. First show that, for a given j ∈ J , the object
(

lim←−I D
)
j

is the

limit of the diagram whose objects are {(Di)j | i ∈ I} and whose morphisms are the “jth
components” of the natural transfomrations between the diagrams Di.

Let L denote the object on the right side of Equation (1.3.2). Then L comes equipped
with maps into the “limit of diagrams”, which compose with the maps comprising the natural
maps from that diagram into each of the diagrams Di. These maps induce maps from L
into lim←−

J
Di for each i, and everything commutes. It remains to show that L equipped with

the latter maps is final. Suppose L̃ is another. Then by composing stuff we get maps from

L̃ into each of the Di, and using finality of each
(

lim←−I D
)
j

we get maps from L̃ into the

diagram lim←−I D. These then induce a map into L, and we’re done.
For colimits, just do the same thing with some arrows reversed. (Note that the colimit

functor is still covariant, however.)

Here’s a picture of an example, with kernels (defined in a later section).

lim←− kerhi lim←−Ai lim←−Bi

kerh1 A1 B1

kerh2 A2 B2

kerh3 A3 B3

This comes from the interpretation of kernels as limits, though I’ve omitted a bunch of zero
objects for clarity. The content of Exercise 1.3.7 is that the kernel on the top left object is
actually the kernel of the map on the top right.

1.4 Adjoints

Given (covariant) functors F : A → B and G : B → A, we say (F,G) is an adjoint pair if
for all A ∈ A and B ∈ B, there is a natural bijection

τAB : HomB(F (A), B) ' HomA(A,G(B)).

17



Visually, the bijection is between the red and blue arrows in the diagram below:

A F (A)

G(B) B

Note that that HomB(F (−),−) and HomA(−, G(−)) are bifunctors Aop × B → Set. By
naturality, we mean that τ is a natural isomorphism between them. Explicitly, for any
morphisms A′ → A and B → B′, we have the following commuting square in Set.

HomB(F (A), B) HomA(A,G(B))

HomB(F (A′), B′) HomA(A′, G(B′))

τAB

τA′B′

An adjunction says that “the data of a morphism F (A) → B is the same as the data
of a morphism A → G(B)”. The example to keep in mind is the adjuction between the
free and forgetful functors (say, between Set and Grp). Indeed, given a set S, any group
homomorphism F [S]→ H defined on the free group generated by S is uniquely specified by
a function S → H of sets.

Exercise 1.4.1 (Units and counits). Suppose (F,G) is an adjoint pair. For each A, there is
a natural morphism ηA : A→ GF (A), called the unit of the adjunction, with the following
property. For any morphism g : F (A) → B, the corresponding τAB(g) : A → G(B) is given
by the composition

A
ηA−→ GF (A)

G(g)−−→ G(B).

Formulate the dual statement.

Solution. We set ηA := τA,F (A)(1F (A)). We wish to show that the left triangle in the following
diagram commutes:

A F (A)

GF (A)

G(B) B

τAB(g)

ηA

g

G(g)

This is simply a consequence of the naturality of τ :

HomB(F (A), B) HomA(A,G(B))

HomB(F (A), F (A)) HomA(A,GF (A))

τAB

τA,F (A)

G(g)∗ G(g)∗

I don’t feel like checking naturality or formulating the dual.
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The unit in the adjunction between the free and forgetful functors is the “canonical
inclusion” of the generating set into the underlying set of the free group it generates. Dually,
the counit is the “introducing relations” group homomorphism F [G]→ G that sends g 7→ g.

Exercise 1.4.2 (Currying isomorphism). Let M,N,P be A-modules. Describe a natural
isomorphism

HomA(M ⊗A N,P ) ∼= HomA(M,HomA(N,P )).

Deduce that (−)⊗A N and HomA(N,−) are adjoint functors.

Solution. In the left-to-right direction, the isomorphism τ is given by

σ 7→ (m 7→ (n 7→ σ(m⊗ n))). (1.4.1)

Using the universal property of the tensor product, we can construct an inverse map

θ 7→ (m⊗ n 7→ θ(m)(n)).

We check naturality of τ . Suppose f : M ′ → M and g : P → P ′ are A-module maps. We
observe the effect of the induced maps on both sides of (1.4.1).

(i) The left side is sent to g ◦ σ ◦ (f ⊗ 1).

(ii) The right side is sent to (m 7→ (n 7→ g(σ(f(m)⊗ n)))).

Evidently, τ sends (i) to (ii), so the induced maps respect τ .

If we endow the hom-sets in ModA with A-module structures, we see that the currying
isomorphism is in fact a natural isomorphism in ModA and not just Set.

Exercise 1.4.3 (Restriction and extension of scalars are adjoints). Let A → B be an A-
algebra. Let M →MA denote the restriction-of-scalars functor ModB →ModA, and recall
from Exercise 1.2.8 the extension-of-scalars functor ModA →ModB given by B ⊗A (−).

Show that M →MA is right-adjoint to B ⊗A (−).

Solution. Let M be an A-module and N a B-module. We seek a bijection τ from the B
module maps B ⊗AM → N to A-module maps M → NA.

M B ⊗AM

NA N

Suppose g : B⊗AM → N is a B-module map. Define τ(g) to be the map m 7→ g(1⊗m). For
concreteness, let’s check that τ(g) actually defines an A-module map. Writing ϕ : A → B
for the structure map, we have

τ(g)(am) = g(1⊗ am)

= g(a(1⊗m))

= g(ϕ(a) · (1⊗m))

= ϕ(a) · g(1⊗m)

= ag(1⊗m),
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as needed. For the inverse, suppose f : M → NA is an A-module map. Define ρ(f) to be the
map b⊗m 7→ b · f(m). Check that ρ(f) is a B-module map.

We check that τ and ρ are inverses. The map ρ(τ(g)) sends b⊗m to b·g(1⊗m) = g(b⊗m).
The map τ(ρ(f)) sends m to (b⊗m′ 7→ b · f(m′))(1⊗m) = f(m).

Too lazy to check naturality.

Note. In both the free/forgetful adjunction and in Exercise 1.4.3, the functor that “forgets
structure” is right-adjoint to the functor that “adds structure”.

Exercise 1.4.4. Show that right adjoints commute with limits and left adjoints commute
with colimits.

Solution. Let C1, C2 be categories and suppose (F,G) is an adjoint pair between them. Let
A = {Ai}i∈I be a diagram in C2. We wish to show that

G(lim←−A) = lim←−(GA).

Let T ∈ C1 be an object equipped with maps (red) into GA making everything commute. It
suffices to show that there is a unique map T → G(lim←−A) making everything commute.

T FT

G(lim←−A) GA2 lim←−A A2

GA1 GA3 A1 A3

Now we use the adjoint property to port everything over to C2. The red maps are in bijection
with the blue maps, and everything commutes by naturality. Then it’s enough to show that
there’s a unique map FT → lim←−A making everything commute in C2, but this simply follows
from the definition of the limit.

The dual property for left adjoints and colimits is proved similarly.

For example, Exercise 1.4.4 implies that colimits commute with tensor products.

1.5 Abelian categories

A zero object is an object that’s initial and final. Clearly, any two zero objects are uniquely
isomorphic.

Exercise 1.5.1. In a category C with a zero object, there is a unique zero map 0: A→ 0→ B
between any two objects A and B. Composition with the zero map yields the zero map.
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Solution. For uniqueness, suppose we have two zero maps, as shown. By definition, all maps
in the diagram exist and are unique, so the diagram commutes.

A 01

02 B

α

α′

σ

β

ρ

β′

Then βα = βρα′ = β′α′, as desired. The second property is obvious.

Suppose C has a zero object. The kernel of a map f : A→ B is a an object ker(f) along
with a map ι : ker(f) → A such that f ◦ ι = 0, and (ker(f), ι) is final with respect to this
property. Dually, a cokernel of f is an object coker(f) along with a map π : C → coker(f)
such that π ◦ f = 0, and (coker(f), π) is initial with respect to this property. If f is a
monomorphism, we may refer to coker(f) as a quotient and write B/A. Of course, kernels
and cokernels are unique up to unique isomorphism. We’ll abuse notation and say “kernel”
or “cokernel” to refer to the object, the map, or both.

Exercise 1.5.2. Interpret kernels and cokernels as limits and colimits, respectively. Hint:
the diagrams will have three objects, one of them zero...

Exercise 1.5.3. A kernel is monic. Dually, a cokernel is epic.

Solution. Suppose g, h : C → ker(f) are parallel morphisms such that ι ◦ g = ι ◦ h, call this
map α. Then f ◦ α = 0, hence α factors uniquely through a map to the kernel. It follows
that g = h, as needed.

C ker(f) A B

g

h

α

ι

0

f

The dual is similar.

Exercise 1.5.4. Consider maps f : A→ B and f : A→ C. Show that the assertion ker(f) =
ker(g) makes sense. In other words, if there exists a map k : K → A that is a kernel of both
f and g, then any kernel of f is a kernel of g and vice versa.

Solution. The existence of a common kernel implies that any map α into A satisfies f ◦α = 0
if and only if g ◦ α = 0, as both are equivalent to α factoring through k. Now, say a little
more stuff and finish.

An abelian category is a category C with the following properties:

(i) Every hom-set HomC(A,B) is equipped with the structure of an abelian group such
that composition distributes over addition.

(ii) There exists a zero object in C.
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(iii) Finite products exist.

(iv) Kernels and cokernels exist.

(v) Every monomorphism is the kernel of its cokernel.

(vi) Every epimorphism is the cokernel of its kernel.

An additive category is one satisfying (i), (ii), (iii). An additive functor between additive
categories is a functor that respects addition of maps (in other words, determines abelian
group homomorphisms between hom-sets.)

Exercise 1.5.5. In an additive category, the additive identity 0AB ∈ HomC(A,B) is the zero
map 0: A→ B.

Solution. Let β ◦ α denote the zero map A
α−→ 0

β−→ B. By finality of 0, we have α + α = α.
Hence β ◦ α = β ◦ (α + α) = β ◦ α + β ◦ α and thus β ◦ α = 0AB.

Note that in an additive category, the endomorphisms of an object form a (possibly
noncommutative, unital) ring. Recall that a ring is the zero ring if and only if 1 = 0.

Exercise 1.5.6. In an additive category, an object X is a zero object if and only if 1X = 0X
and deduce that additive functors send zero objects to zero objects.

Solution. If X is a zero object, then EndC(X) consists of a single morphism, so 1X = 0X .
Conversely, suppose 1X = 0X . For any morphism f : X → Y , we have f = f ◦1X = f ◦0X =
0. Similarly, for any morphism f : Y → X, we have f = 1X ◦ f = 0X ◦ f = 0. Thus X is a
zero object.

An additive functor F preserves identities and zero maps. So if X is a zero object, then
1F (X) = F (1X) = F (0X) = 0F (X) so F (X) is also a zero object.

Exercise 1.5.7. In an additive category, a map f is monic if and only if f ◦ x = 0 implies
x = 0, if and only ker(f) is a zero object. Dual statement for epic maps and cokernels.

Solution. Easy. Note that additivity implies that any f with ker(f) = 0 is monic; the other
direction is true without the additive assumption.

It’s common practice to assume that functors between additive categories are additive,
but we’ll be explicit and specify each time.

Exercise 1.5.8. In an abelian category, monic and epic implies isomorphism.

Solution. By Exercise 1.5.7, a monic and epic map f : A→ B has kernel and cokernel 0. By
conditions (v) and (vi) in the definition of abelian category, f is a cokernel of 0→ A and a
kernel of B → 0. Thus there exist unique morphisms taking the place of the dotted arrows
below making the diagram commute.

B

0 A B 0

A

1B
∃!

1A

f

∃!
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It follows that f has both a left inverse and a right inverse, hence f has an inverse and is
thus an isomorphism.

Define the image of a map f : A→ B by im(f) := ker(coker(f)). By definition, images
always exist in abelian categories. Check that images are unique up to unique isomorphism
(easy, but not immediate from the corresponding fact for kernels and cokernels).

Exercise 1.5.9. In an abelian category, every map f : A → B factors uniquely through a
map π̃ : A→ im(f), and π is epic. Moreover, π̃ : A→ im(f) is a cokernel of ker(f).

Solution. As a kernel, im(f) comes with a map ι̃ : im(f) ↪→ B. As π ◦ f̃ = 0, the map f
factors uniquely through a map π̃ : A → im(f). We claim that the kernel ker(f) ↪→ A of f
is also a kernel of π̃. Indeed, we have f ◦ ι = ι̃ ◦ π̃ ◦ ι = 0 and monicniess of ι̃ implies that
π̃ ◦ ι = 0. Moreover, if g : C → A is a map with π̃ ◦ g = 0 then f ◦ g = ι̃ ◦ π̃ ◦ g = 0, hence g
factors uniquely through a map h : C → ker(f).

ker(f) A B coker(f)

C im(f)

ι f

π̃

π

∃!h
g ι̃

It remains to show that π̃ is epic; it will follow from the preceding claim along with condition
(vi) in the definition of abelian category that π̃ is the cokernel of ker(f) ↪→ A. So, suppose
x : im(f)→ X is a map with x◦ π̃ = 0. We wish to show that x = 0. Let k : ker(x) ↪→ im(f)
be its kernel, so that it suffices to show that k is epic.

As x◦ π̃ = 0, there’s a unique ρ : A→ ker(x) with π̃ = k◦ρ. Since ι̃◦k is a composition of
monic maps, it is monic, hence it’s the kernel of a map t : B → T by condition (v). But now
we have t◦f = t◦ ι̃◦k◦ρ = 0, hence t factors uniquely as t = σ◦π for some σ : coker(f)→ T .

T

A B coker(f)

ker(x) im(f) X

f

∃!ρ
π̃

t

π

∃!σ

k

0

ι̃

x

But now t ◦ ι̃ = σ ◦ π ◦ ι̃ = 0. Recall that ker(x) is the kernel of t, so as a result ι̃ factors
through a map k̃ : im(f) → ker(x). Then ι̃ = ι̃ ◦ k ◦ k̃, and by monicness of ι̃ we have
k ◦ k̃ = 1. In particular, k has a right inverse, hence is epic, and we’re done.

Exercise 1.5.10. Consider the following diagram in an abelian category. Suppose the central
square commutes. Show that there are unique morphisms in the place of the dotted arrows
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making the diagram commute.

ker(f) A B coker(f)

im(f)

ker(f̃) Ã B̃ coker(f)

im(f̃)

ι

gA

f

gB

π

ι f̃ π̃

Solution. We start with kernels: we have f̃ ◦ gA ◦ ι = gB ◦ f ◦ ι = 0, hence gA ◦ ι factors
uniquely through a map to ker f̃ , as needed. Analogous thing for cokernels. By Exercise
1.5.9, the images im(f) and im(f̃) are cokernels of ker(f) and ker(f̃); hence the result for
cokernels implies that there’s a unique map im(f) → im(f̃) making the left parallelogram,
with A and im(f̃) as corners, commute. One can show that any such map necessarily makes
the right parallelogram, with im(f̃) and B as corners, commute (hint: use monicness of the
inclusion im(B̃) ↪→ B). So everything commutes and we’re happy.

Note. Exercise 1.5.10 is pretty useful. For example, consider two compositions A ↪→ B →
B/A and Ã ↪→ B̃ → B̃/Ã. Compatible maps A→ Ã and B → B̃ induce a unique compatible
map between the quotients.

Let C be an abelian category throughout. A chain complex in C, denoted C•, is a

diagram of the form (. . .
∂−→ Cn

∂−→ Cn−1
∂−→ . . . ) with ∂2 = 0. Latter condition implies

there’s a canonical monomorphism im ∂n+1 ↪→ ker ∂n. We define nth homology Hn(C•) :=
ker ∂n/ im ∂n+1. (For chain complexes with increasing indices, we write Hn(C•) and call it
cohomology). A complex is exact at Cn if im ∂n+1 ↪→ ker ∂n is an isomorphism, equivalently
Hn(C•) = 0, equivalently there is an object that is simultaneously an image of ∂n+1 and a
kernel of ∂n. Check that homology is a functor. (Use Exercise 1.5.10, twice!)

Let ComC denote the category of chain complexes over C. The morphisms are chain
maps.

Exercise 1.5.11. Show that ComC is an abelian category.

Solution. Not going to do all the details, just use the fact that C is abelian and tack
things together to get the corresponding properties for complexes. It’s easy to see that
HomComC(C•, D•) is an abelian group (add chain maps componentwise). There’s a zero ob-
ject (· · · → 0 → 0 → . . . ). Kernels always exist, namely, tack together the componentwise
kernels using the induced maps of Exercise 1.5.10. (Can check that it satisfies ∂2 = 0 using
monicness of kernels.) Similar thing for cokernels.

Exercise 1.5.12. Show that a covariant additive functor between abelian categories is left
exact if and only if it preserves kernels. Dually, it is right exact if and only if it preserves
cokernels.
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For contravariant functors, the respective conditions should be that cokernels are sent to
kernels and vice versa.

Solution. We’ll just do the covariant case. This boils down to showing that f : A → B has

kernel ι : K → A if and only if 0→ K
ι−→ A

f−→ B is exact. (Observe that the functor sends
0 to 0 by Exercise 1.5.6, which is why additivity is needed.) By Exercise 1.5.7, the latter
is equivalent to exactness at A and monicness of ι. If this holds, then ker(f) = im(ι) =
ker(coker(ι)). But a monic map in an abelian category is the kernel of its cokernel, so ι
works for the right side. By Exercise 1.5.4, this means ι also works as a kernel of f , as
needed. Converse is similar.

Define left exact and right exact functors between abelian categories (both covariant
and contravariant – remember to flip the arrows for the latter). Define exact functors as
those that are left exact and right exact.

Exercise 1.5.13. Show that (additive) exact functors preserve exactness. (That is, A →
B → C exact implies FA→ FB → FC exact.)

Solution. Show that exactness of A → B → C is equivalent to ker(g) being a kernel of
coker(f), then use Exercise 1.5.12.

Exercise 1.5.14 (Exactness properties of ⊗ and Hom). Show that

(i) Given an A-module N , the functor (−)⊗A N is a right exact functor.

(ii) Localization of modules is exact.

(iii) Given an A-module N , the functors HomA(−, N) and HomA(N,−) are left exact func-
tors from ModA to itself. In a general abelian category C and an object X ∈ C, the
functors HomC(−, X) and HomC(X,−) are left exact functors from C to Ab.

Solution. We first note that all functors in question are additive, so Exercise 1.5.12 applies.

For (i): Suppose M ′ f−→ M
g−→ M ′′ → 0 is exact. The map g ⊗ 1 induced by tensoring

sends m ⊗ n to g(m) ⊗ n, hence hits all generators of the codomain, hence is surjective. It
remains to show exactness of

M ′ ⊗A N
f⊗1−−→M ⊗A N

g⊗1−−→M ′′ ⊗A N.

It’s clear that the above composition is 0, hence g ⊗ 1 factors through a map g̃ from the
quotient (M ⊗A N)/ im(f ⊗ 1). It’s enough to show that g̃ is an isomorphism. To do
this, we can construct an explicit inverse. By surjectivity of g, we may choose a preimage
m ∈ g−1(m′′) for each m′′ ∈M ′′. Define the inverse map by m′′⊗n 7→ m⊗n (mod im(f⊗1)).
To see that this is well-defined, suppose m1,m2 ∈ M are such that g(m1) = g(m2). Then
m1⊗n−m2⊗n = (m1−m2)⊗n ≡ 0 (mod im(f⊗1)), where the last equality uses exactness
of the original sequence.

For (ii): Let A be a ring, S ⊂ A a multiplicative subset. Recall from Exercise 1.2.4 that
localization of A-modules is equivalent to tensoring by S−1A, and by (i) it suffices to show
that localization is left exact. By Exercise 1.5.12, we just need to show that it preserves
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kernels. Consider ker(f) ↪→ M
f−→ M ′. Let’s take the explicit constructions. We wish to

show that the kernel of f∗ : S
−1M → S−1M ′ is precisely {m/s | m ∈ ker f}. Note that every

element of S−1M takes the form m/s. (If working with the tensor product interpretation,
then every element of (S−1A)⊗M is a finite combination of elements of the form (a/s)⊗m,
and the idea is that we can “put the fraction over a common denominator” to get it all into
one term.) So, if f(m)/s = 0, then multiplying both sides by s yields f(m) = 0, as needed.

For (iii), we’ll just show that HomA(−, N) is left exact, and the rest are similar. It suffices

to show that it sends cokernels to kernels. Suppose M ′ f−→ M
g−→ M ′′ where g is a cokernel

of f . Any map σ : M → S with σ ◦ f = 0 factors uniquely through g. Now consider the
dualized sequence

HomA(M ′, N)
f∗←− HomA(M,N)

g∗←− HomA(M ′′, N).

Then g∗ is injective, and f ∗ ◦ g∗ = 0. The kernel of f ∗, as a submodule of HomA(M,N),
consists of those ϕ such that ϕ ◦ f = 0. But we observed earlier that such ϕ must factor
through g, equivalently they lie in the image of g∗. The result follows.

Note. It’s possible to prove (i) using (iii) via the currying isomorphism. Also, here’s an
example of the tensor product failing to be left exact. Consider

0→ Z 2−→ Z.

Now tensor everything by Z/2Z. Kernels are not preserved: the second map becomes the
zero map.

Exercise 1.5.15 (FHHF). Suppose C• is a chain complex over an abelian category C. Let
F be a covariant additive functor from C to another abelian category.

(i) If F is right exact, then there is a natural map FH• → H•F .

(ii) If F is left exact, then there is a natural map in the opposite direction.

(iii) If F is exact, then maps in (i) and (ii) are inverses and thus F “commutes with
homology”.
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Solution. Apply F to the complex A• and consider the commuting diagram:

F (coker ∂n+1) coker(F∂n+1)

FAn+1 FAn FAn−1

im(F∂n+1) ker(F∂n)

F (im ∂n+1) F (ker ∂n)

∃!σ

F∂n+1 F∂n

∃!τ

The maps σ and τ between the cokernels and kernels follow from universal properties. (For
example, the composition FAn+1 → FAn → F (coker ∂n+1) is zero before and thus after
applying F .)

Suppose F is right exact. Since F preserves cokernels, F (Hn(A•)) is the cokernel of the
bottom map in the above diagram. Additionally, the map σ is an isomorphism. It follows
that the composition

F (im ∂n+1)→ FAn → coker(F∂n+1)

is zero, so it factors uniquely through a map F (im ∂n+1) → im(F∂n+1). We claim that
this makes the bottom square commute; to see this, just compose both paths with the
monomorphism ker(F∂n) ↪→ FAn and use the rest of the diagram to show that the results
are equal. Now, apply Exercise 1.5.10 to get the map F (Hn(A•)) → Hn(FA•) between the
cokernels, which is what we needed.

Next suppose F is left exact, i.e. preserves kernels. So this time τ is an isomorphism,
and F (im ∂n+1) ↪→ FAn is the kernel of FAn → F (coker ∂n+1). Since the composition
im(F∂n+1) ↪→ FAn → F (coker ∂n+1) is zero (factor through σ), it factors uniquely through
a map im(F∂n+1)→ F (im ∂n+1). As before, we can show that the bottom square commutes
(this time with downward vertical arrows), and we get a map between the cokernels. However,
it is not necessarily the case that F (Hn(A•)) is a cokernel of the bottom row, so we get the
actual desired map from a diagram like this:

im(F∂n+1) ker(F∂n) Hn(FA•)

F (im ∂n+1) F (ker ∂n) coker(ι)

F (Hn(A•))

τ !∃

0

ι

!∃
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I’m lazy to show naturality and do (iii) but they seem intuitive enough.

For a concrete example of Exercise 1.5.15, consider ModR and let F be the tensor product
functor (−)⊗R N . Part (i) says that there is a natural map

Hn(A•)⊗R N → Hn(A• ⊗R N).

It’s induced by the natural maps (ker ∂n) ⊗R N → ker(∂n ⊗ 1) and (im ∂n+1) ⊗R N →
im(∂n+1 ⊗ 1). If we think of the target spaces as submodules of An ⊗R N , then those maps
are induced by the respective inclusions ker ∂n, im ∂n+1 ↪→ An. Then the map above is given
by

[a]⊗m 7→ [a⊗m],

where a is an n-cycle of A• and [a] denotes its residue in homology. We can check directly that
this map is well-defined: if [a] = [b], then a−b is a boundary in An, hence [a⊗m]− [b⊗m] =
[(a− b)⊗m] = 0 since (a− b)⊗m is a boundary in An ⊗R N .

Part (iii) says that the above map is an isomorphism when (−)⊗RN is exact (i.e. when
N is flat).

Let’s talk about exactness properties of (co)limits. Recall from Exercise 1.3.7 that limits
commute. Since kernels are limits, it follows that limits are left exact. What does this mean?
Let C be an abelian category with limits, and suppose I is an index category and A,B,C
are diagrams in C indexed by I. Let f : A→ B and g : B → C be natural transformations,
i.e. morphisms in F(I, C). Explicitly, we have a sequence Ai → Bi → Ci for each i ∈ I,
and these maps are compatible with the other maps in the diagrams. One can show, exactly
as in Exercise 1.5.11, that F(I, C) is an abelian category, and thus it makes sense to speak
of exactness on the level of diagrams. In particular, suppose f : A → B is the kernel of
g : B → C. (On the object level, this means that fi is the kernel of gi for all i ∈ I.)
Then the assertion “limits are left exact” is the assertion that lim←−A → lim←−B is a kernel of
lim←−B → lim←−C.

How to remember this? Associate limits with kernels and kernels with left exactness.
Dually, colimits are right exact; associate colimits with cokernels with right exactness.

In special cases (think: concrete categories?), filtered colimits are actually exact.

Exercise 1.5.16. Show that filtered colimits over ModA are exact.

Solution. By the discsussion above, colimits are right exact, so we need show left exactness.
We’ll use the explicit construction for colimits in ModA given in Exercises 1.3.4 and 1.3.5.
Assume the notation from above. The map f∗ : lim−→A → lim−→B sends [(ai, i)] 7→ [(fi(ai), i)],
and similarly for g∗ : lim−→B → lim−→C. We wish to show that ker(g∗), as a submodule of lim−→B,
consists precisely of those elements [(bi, i)] in the image of f∗.

Suppose [(gi(bi), i)] = 0 = [(0, j)]. As I is filtered, there exists a map i → k such that
Ci → Ck sends gi(bi) to 0. Then the corresponding map Bi → Bk in B sends bi 7→ bk for
some bk, and the commuting square yields gk(bk) = 0.

bi gi(bi)

bk 0
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In particular, as fk is the kernel of gk, we have bk ∈ im(fk) and thus

[(bi, i)] = [(bk, k)] ∈ im(f∗),

as desired.
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